Strigolactone Signaling in Arabidopsis Regulates Shoot Development by Targeting D53-Like SMXL Repressor Proteins for Ubiquitination and Degradation.

نویسندگان

  • Lei Wang
  • Bing Wang
  • Liang Jiang
  • Xue Liu
  • Xilong Li
  • Zefu Lu
  • Xiangbing Meng
  • Yonghong Wang
  • Steven M Smith
  • Jiayang Li
چکیده

Strigolactones (SLs) are carotenoid-derived phytohormones that control many aspects of plant development, including shoot branching, leaf shape, stem secondary thickening, and lateral root growth. In rice (Oryza sativa), SL signaling requires the degradation of DWARF53 (D53), mediated by a complex including D14 and D3, but in Arabidopsis thaliana, the components and mechanism of SL signaling involving the D3 ortholog MORE AXILLARY GROWTH2 (MAX2) are unknown. Here, we show that SL-dependent regulation of shoot branching in Arabidopsis requires three D53-like proteins, SUPPRESSOR OF MORE AXILLARY GROWTH2-LIKE6 (SMXL6), SMXL7, and SMXL8. The smxl6 smxl7 smxl8 triple mutant suppresses the highly branched phenotypes of max2 and the SL-deficient mutant max3. Overexpression of a mutant form of SMXL6 that is resistant to SL-induced ubiquitination and degradation enhances shoot branching. Exogenous application of the SL analog rac-GR24 causes ubiquitination and degradation of SMXL6, 7, and 8; this requires D14 and MAX2. D53-like SMXLs form complexes with MAX2 and TOPLESS-RELATED PROTEIN2 (TPR2) and interact with D14 in a GR24-responsive manner. Furthermore, D53-like SMXLs exhibit TPR2-dependent transcriptional repression activity and repress the expression of BRANCHED1. Our findings reveal that in Arabidopsis, D53-like SMXLs act with TPR2 to repress transcription and so allow lateral bud outgrowth but that SL-induced degradation of D53-like proteins activates transcription to inhibit outgrowth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SMAX1-LIKE/D53 Family Members Enable Distinct MAX2-Dependent Responses to Strigolactones and Karrikins in Arabidopsis.

The plant hormones strigolactones and smoke-derived karrikins are butenolide signals that control distinct aspects of plant development. Perception of both molecules in Arabidopsis thaliana requires the F-box protein MORE AXILLARY GROWTH2 (MAX2). Recent studies suggest that the homologous SUPPRESSOR OF MAX2 1 (SMAX1) in Arabidopsis and DWARF53 (D53) in rice (Oryza sativa) are downstream targets...

متن کامل

Strigolactone- and Karrikin-Independent SMXL Proteins Are Central Regulators of Phloem Formation

Plant stem cell niches, the meristems, require long-distance transport of energy metabolites and signaling molecules along the phloem tissue. However, currently it is unclear how specification of phloem cells is controlled. Here we show that the genes SUPPRESSOR OF MAX2 1-LIKE3 (SMXL3), SMXL4, and SMXL5 act as cell-autonomous key regulators of phloem formation in Arabidopsis thaliana. The three...

متن کامل

Strigolactones Regulate Plant Growth in Arabidopsis via Degradation of the DWARF53-Like Proteins SMXL6, 7, and 8.

Strigolactones (SLs) secreted from roots mediate symbiosis with arbuscular mycorrhizal fungi and can trigger germination of parasitic plants (reviewed in Al-Babili and Bouwmeester, 2015). SLs also influence shoot branching, root growth, and leaf shape (reviewed inWilliams and Yamaguchi, 2015). In SL signaling in rice (Oryza sativa), the DWARF3 F-box protein acts with the SL receptor DWARF14 as ...

متن کامل

Strigolactone regulates shoot development through a core signalling pathway

Strigolactones are a recently identified class of hormone that regulate multiple aspects of plant development. The DWARF14 (D14) α/β fold protein has been identified as a strigolactone receptor, which can act through the SCFMAX2 ubiquitin ligase, but the universality of this mechanism is not clear. Multiple proteins have been suggested as targets for strigolactone signalling, including both dir...

متن کامل

Shape-Shifters: How Strigolactone Signaling Helps Shape the Shoot[OPEN]

When a deer eats the primary shoot of a plant, this can activate a nearby dormant axillary bud, causing it to formasecondary shoot. Genetic and environmental factors also affect shoot architecture, which strongly influences crop productivity. Changes in shoot architecture are mediated by long-distance signals, including phytohormones. For example, strigolactones (SLs) help regulate shoot branch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 27 11  شماره 

صفحات  -

تاریخ انتشار 2015